Analytic Extraction of IR/UV divergences in multiloop diagram

Yeo Woong Yoon (KIAS) High1-2014 KIAS-NCTS Joint workshop 2014/2/14

Outline

Introduction

- 1. Motivation
- 2. UV, IR divergences
- 3. Parameterization for multiloop diagram
- 4. Sector decomposition
- Analytic separation of UV/IR divergences
- Examples
- Summary

Now we are in this status.

- LHC has discovered a Higgs boson which is consistent with SM prediction.
- However, it has not found any signal BSM.
- But, It should be somewhere...
- Tantalizing question is how and where to find it.

Collider people have an answer in mind

The ways to find NP signal:

Indirect Search

Low energy observables.

- Top physics
- Higgs physics
- (g-2)μ, EDM
- B physics, FCNC
- EW precision

Excess in kinematic distribution Jet observables Somewhere else.. Direct Search

Resonances, bumps

→ Entering Into Precision era

In order for that, we need to do before and after LHC14 run

- make solid understanding of theory prediction
 - Higher order corrections in collider observables.
 - Resummation of large logs for given process.
 - Better understanding about theory uncertainty
- pin down fundamental parameters
 - αs(Mz),
 - mt, mw, mz,
 - Mh, Yt, λ hhh, λ hhhh

\rightarrow We easily meet multiloop calculation

The aim of this work is

- Analytic separation of IR and UV divergences for given multiloop diagram.
 - Analytic computation has
- pros: Exact, Flexible
 - Keep analytic property

cons:

Sometimes not available Complicated

- There are numerical methods (Sector Decomposition) Heinrich, 0803.4177, SecDec, FIESTA
- There is no analytic methods in the market.
- Automatic calculation with computing code.
 "Revolution of NLO" MC@NLO, POWHEG, Blackhat, MCFM... Automatic calculation beyond NLO is still an open question.

UV, IR divergences

Let us consider the process $\gamma^* \rightarrow q \overline{q}$ Virtual correction $UV \qquad \int \frac{d^a k}{(2\pi)^d} \frac{1}{k^4} \sim \frac{1}{\epsilon_{\rm IIV}}$ ~ $\int \frac{d^{a}k}{(2\pi)^{d}} \frac{1}{k^{2}(\not k + \not p_{1})(\not k - \not p_{2})}$ $= \int \frac{d^{d}k}{(2\pi)^{d}} \frac{(\not k + \not p_{1})(\not k - \not p_{2})}{k^{2}(k^{2} + 2k \cdot p_{1})(k^{2} - 2k \cdot p_{2})} \xrightarrow{\text{IR}}{k \sim 0} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{k^{2}k \cdot p_{1}k \cdot p_{2}} \sim \frac{1}{\epsilon_{n}}$ $\int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2(k^2+2k\cdot p_1)} \sim \frac{1}{\epsilon_{\text{IR}}}$ All the UV divs. are eliminated by Renormalization. → Collinear divergence

UV, IR divergences

All the IR divs. are canceled between Virtual correction and Real emission. \rightarrow KLN theorem.

UV, IR divergences

Dipole subtraction method (NLO)

S. Catani, M. Seymour, (1997), S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi (2002)

→ Systematic method for canceling IR between virtual correction and real emission diagrams.

$$\sigma^{\text{NLO}} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_{m} \left[d\sigma^V + \int_{1} d\sigma^A \right]_{\epsilon=0}$$

Antenna subtraction (up to NNLO)

Kosower (1998), Ridder, Gehrmann, Glover (2005)

$$d\sigma_{\rm NNLO} = \int_{d\Phi_{m+2}} \left(d\sigma_{\rm NNLO}^R - d\sigma_{\rm NNLO}^S \right) + \int_{d\Phi_{m+2}} d\sigma_{\rm NNLO}^S + \\ + \int_{d\Phi_{m+1}} \left(d\sigma_{\rm NNLO}^{V,1} - d\sigma_{\rm NNLO}^{VS,1} \right) + \int_{d\Phi_{m+1}} d\sigma_{\rm NNLO}^{VS,1} + \\ + \int_{d\Phi_m} d\sigma_{\rm NNLO}^{V,2} ,$$

 \rightarrow In any case, we need to calculate IRs in virtual correction.

Feynman Parameterization ۲

$$F_{\Gamma}(q_{1},q_{2},\cdots,q_{n};d) = \int [d^{d}k_{1}\cdots d^{d}k_{h}] \frac{1}{\mathcal{P}_{1}^{a_{1}}\cdots\mathcal{P}_{L}^{a_{L}}} \equiv F(q_{1},\cdots,q_{n};d)$$

$$F_{\Gamma}(q_{1},q_{2},\cdots,q_{n};d) = \int d^{d}k_{1}\cdots d^{d}k_{h}$$

$$\times \int_{0}^{\infty} d\xi_{1}\cdots\int_{0}^{\infty} d\xi_{L}\delta(\sum\xi_{l}-1)\frac{\prod_{l}\xi_{l}^{a_{l}-1}}{(\sum\mathcal{P}_{l}\xi_{l})^{a}}$$

 \rightarrow Divergences arise in hyper-surface S(ki, ξ_i) that makes $\Sigma P_i \xi_i = 0$.

- End point singularity Pinch surface

G. Sterman,"Intro to QFT" (1993)

• alpha Parameterization

$$F(q_1,q_2,\cdots,q_n;d) = \frac{(-1)^a}{\prod_j \Gamma(a_j)} \int_0^\infty d\alpha_1 \cdots \int_0^\infty d\alpha_L \delta(\sum \alpha_j - 1) \frac{\mathcal{U}^{a-(h+1)d/2} \prod_j \alpha_j^{a_j-1}}{(-\mathcal{V} + \mathcal{U} \sum m_j^2 \alpha_j)^{a-hd/2}}$$

$$\mathcal{U} = \sum_{T \in \mathcal{T}^1} \prod_{I \notin T} \alpha_I \qquad \rightarrow \text{Polynomial of } \alpha \text{s of total order } h.$$

- $\mathcal{V} = \sum_{T \in T^2} \prod_{l \notin T} \alpha_l (q)^2 \quad \rightarrow \text{Polynomial of } \alpha \text{s of total order } h+1.$
 - → U, V are polynomials of order 1 for each variable α.
 → Only end-point singularity, No pinch surface.

For example

$$F(s,t;\varepsilon) = \int_0^\infty d\alpha_1 \cdots \int_0^\infty d\alpha_4 \delta(\sum \alpha_j - 1) \frac{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - 1)^{2\varepsilon}}{(-t\alpha_1\alpha_3 - s\alpha_2\alpha_4)^{2+\varepsilon}}$$

Where are UV/IR divergences?

 \rightarrow searching for denominator to be zero.

Divergences arise when denominator becomes zero as same number of alphas with integer power of denominator have boundary values.

For example-1

$$\int_{0}^{1} d\alpha \frac{1}{(\alpha + i0)^{1-\varepsilon}} = \frac{1}{\varepsilon}$$
$$\int_{0}^{1} d\alpha \frac{1}{(\alpha - 1/2 + i0)^{1-\varepsilon}} = \log\left(\frac{1}{2}\right) - \log\left(-\frac{1}{2} + i0\right) = -\pi i$$

 \rightarrow zero denominator with non-boundary values of alphas generate imaginary values.

For example-2

$$\int_{0}^{1} d\alpha_{1} d\alpha_{2} \frac{1}{(\alpha_{1} + \alpha_{2})^{1-\varepsilon}} = \int_{0}^{1} d\alpha_{1} \ln\left(\frac{1+\alpha_{1}}{\alpha_{1}}\right) + \mathcal{O}(\varepsilon) = 2\ln 2 + \mathcal{O}(\varepsilon)$$

 \rightarrow No div. where the number of alphas with boundary values that make denominator zero is greater than integer power of denominator.

$$\int_{0}^{1} d\alpha_{1} d\alpha_{2} \frac{1}{(\alpha_{1} + \alpha_{2})^{2-\varepsilon}} = \int_{0}^{1} d\alpha_{1} \frac{\alpha_{1}^{\varepsilon-1} - (\alpha_{1} + 1)^{\varepsilon-1}}{1-\varepsilon} = \frac{1}{\varepsilon} + 1 - \ln 2 + \mathcal{O}(\varepsilon)$$

Sector Decomposition

Heinrich, 0803.4177

→ Algorithmic. <u>Suitable for numeric calculation.</u>

We first apply 'Cheng-Wu' theorem for all alphas except 1.

$$F(q_1,q_2,\dots,q_n;d) = \frac{(-1)^a}{\prod_j \Gamma(a_j)} \int_0^\infty d\alpha_1 \dots \int_0^\infty d\alpha_l \delta(\sum \alpha_j - 1) \frac{\mathcal{U}^{a-(h+1)d/2} \prod_j \alpha_j^{a_j-1}}{(-\mathcal{V} + \mathcal{U} \sum m_j^2 \alpha_j)^{a-hd/2}}$$
We can replace $\delta(\sum \alpha_j - 1)$ with $\delta(\sum_{\nu \in S} \alpha_\nu - 1)$ for any subset S of alpha variables set.
Our choice is $\delta(\sum \alpha_j - 1) \to \delta(\alpha_l - 1)$

"Liberation" : we choose one alpha and make it 1, integrate from zero to infinity for all the other α s.

Cost: End point is extended from o to $\{o,\infty\}$

Investigate denominator to find divergences

$$rac{1}{\mathcal{U}^{2-arepsilon}(-\mathcal{V}\!+\!\mathcal{U}\!\sum\!m_{j}^{2}lpha_{j})^{3-arepsilon}}$$

Construct a set *S* that consists of set of alphas that cause divergences

1. For example

$$S_{1} = \{\alpha_{1}, \alpha_{2}\}$$
$$S_{2} = \{\alpha_{1}, \alpha_{3}\}$$
$$S_{3} = \{\alpha_{4}, \alpha_{6}\}$$

3. Do the variable change,

 $\begin{aligned} \alpha_{1} & \rightarrow \eta_{1}\eta_{2}\alpha_{1}, \\ \alpha_{2} & \rightarrow \eta_{1}\alpha_{2}, \\ \alpha_{3} & \rightarrow \eta_{2}\alpha_{3}, \\ \alpha_{4} & \rightarrow \eta_{3}\alpha_{4}, \\ \alpha_{5} & \rightarrow \eta_{3}\alpha_{5} \end{aligned}$

2. Multiply by $1 = \int_0^\infty d\eta_1 d\eta_2 d\eta_3 \delta(\eta_1 - \alpha_2) \delta(\eta_2 - \alpha_3) \delta(\eta_3 - \alpha_4 - \alpha_6)$

The IR/UV div. are separated as

$$\int_{0}^{\infty} d\eta_{1} d\eta_{2} d\eta_{3} \eta_{1}^{-1+a_{1}\varepsilon} \eta_{2}^{-1+a_{2}\varepsilon} \eta_{3}^{-1+a_{3}\varepsilon} \delta(\alpha_{2}-1) \delta(\alpha_{3}-1) \delta(\alpha_{4}+\alpha_{6}-1) F(\eta_{i},\alpha_{i},\varepsilon)$$
Div. part
Div. free, safely expanded in ε
After variable change : $\eta_{j} \rightarrow \frac{(1-\xi_{j})}{\xi_{j}}, \int_{0}^{\infty} d\eta_{j} \rightarrow \int_{0}^{1} \frac{d\xi_{j}}{\xi_{j}^{2}}$

we use following expansion formula for div. part.

$$\xi^{-1+a\varepsilon} = \frac{\delta(\xi)}{a\varepsilon} + \sum_{k} \frac{(a\varepsilon)^{k}}{k!} \left[\frac{\ln^{k} \xi}{\xi} \right]_{+}$$

Analytic Computation

Remaining integrals can be done in terms of GHPLs. GHPL : Generalized Harmonic Poly-Logarithm func.

$$G(p_1, \dots, p_m; x) \equiv \int_0^x \frac{dy_1}{y_1 - p_1} \int_0^{y_1} \frac{dy_2}{y_2 - p_2} \dots \int_0^{y_{m-1}} \frac{dy_m}{y_m - p_m}$$

EX: $\text{Li}_n(x) = -\int_0^x \frac{dy_1}{y_1} \int_0^{y_1} \frac{dy_2}{y_2} \dots \int_0^{y_{n-1}} \frac{dy_n}{y_n - 1} = -G(o, o, \dots, o, 1; x)$

We are trying to do

$$\int_0^1 \prod_i d\xi_i \frac{1}{P(\xi_i, p_j)} = \sum \prod G(\vec{b}_m, x)$$

Summary

Example

Massless one loop box diagram

After IR separation

$$F(s,t;\varepsilon) = \frac{(-t)^{-\varepsilon}}{st} \Gamma(2+\varepsilon) \frac{\Gamma(-\varepsilon)^2}{\Gamma(-2\varepsilon)} \int_0^1 \xi_1 \xi_2 (\xi_2 \overline{\xi}_2)^{-1-\varepsilon} \left(x \xi_1 \xi_2 + \overline{\xi}_2 \overline{\xi}_2 \right)^{\varepsilon}$$

The result is

$$F(s,t;\varepsilon) = \frac{1}{st} \left(\frac{4}{\varepsilon^2} - \frac{2}{\varepsilon} \left(\ln(-s) + \ln(-t) \right) + 2\ln(-s)\ln(-t) - \frac{4\pi^2}{3} \right)$$

Example

 $\mathcal{U} = (\alpha_3 + \alpha_5)(\alpha_4 + \alpha_6) + (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_5 + \alpha_4 + \alpha_6)$ $\mathcal{V} = q^2(\alpha_1\alpha_2(\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) + \alpha_1\alpha_4\alpha_5 + \alpha_2\alpha_3\alpha_6)$

After IR separation

$$F(q^{2};\varepsilon) = \frac{\Gamma(2+2\varepsilon)}{(-q^{2})^{2+2\varepsilon}} \int_{0}^{1} \xi_{1}\xi_{2}\xi_{3}\xi_{4}\xi_{5} \ (\xi_{1}\overline{\xi_{1}}\xi_{2}\overline{\xi_{2}})^{-1-2\varepsilon} (\xi_{3}\overline{\xi_{3}})^{-1-\varepsilon}\xi_{4}^{-1-2\varepsilon}\overline{\xi_{4}}^{1+\varepsilon}\xi_{5}^{-\varepsilon}$$
$$\times \left(\xi_{4}\overline{\xi_{5}}+\overline{\xi_{4}}\right)^{-2-2\varepsilon} (\xi_{5}\overline{\xi_{4}}+\xi_{1}\xi_{2}\xi_{4}\xi_{5}+\overline{\xi_{1}}\overline{\xi_{2}}\xi_{4}\overline{\xi_{5}})^{3\varepsilon}$$
$$= \frac{1}{(-q^{2})^{2+2\varepsilon}} \left(\frac{1}{\varepsilon^{4}}-\frac{\pi^{2}}{\varepsilon^{2}}-\frac{83\zeta(3)}{3\varepsilon}-\frac{59\pi^{4}}{120}\right)$$

Example

Massless two loop diagram

$$\mathcal{U} = \alpha_{1234}\alpha_5 + \alpha_{12}\alpha_{34}$$
$$\mathcal{V} = \boldsymbol{q}^2 \left(\alpha_5 \alpha_{13} \alpha_{24} + \alpha_1 \alpha_3 \alpha_{24} + \alpha_2 \alpha_4 \alpha_{13} \right)$$

25

There is no div. term.

$$F(s,t;\varepsilon) = \frac{1}{q^2} \int_0^1 d\xi_1 \cdots \int_0^1 d\xi_4 \frac{1}{(\overline{\xi}_2 \xi_2 \xi_3 + \xi_1 (1 - \overline{\xi}_2 \xi_3 (1 + \xi_2 - 2\xi_4) - \xi_4 - \overline{\xi}_2^2 \xi_3^2 \xi_4))}$$

$$F(s,t;\varepsilon) = \frac{6}{q^2} \zeta(3)$$

Summary

- We propose an analytic method of extracting IR/UV divergences in multiloop diagrams representing the results in terms of GHPLs.
- This method is algorithmic and can be automatized with computer programing
- We are testing massless 2loop 4point function as well as some massive diagram. We hope to soon make it public.
- This method will be useful for higher order corrections in this precision era.